THE SQAURE ROOT OF A 2X2 PERFECT SQUARE MATRIX

Emmanuel Nwadim
Department of Electrical Engineering, Nnamdi Azikiwe University, Awka, Nigeria.

Abstract

A perfect square is a number that can be expressed as the product of two equal integer, hence the square root of a perfect square gives two equal integers.

In this study, we introduce a new method for finding the square root of a 2×2 matrix using one of the property of determinant that states that if a matrix C is obtained from a matrix A by multiplying it with matrix B of the same order, the determinant of C is the product of the determinants of A and B.

That is if we have a matrix C such that $A . B=C$, then the above statement can be written as; $$
\Delta_{\mathrm{C}}=\Delta_{\mathrm{A}} \cdot \Delta_{\mathrm{B}}
$$

But in this case $\Delta_{A}=\Delta_{\mathrm{B}}$, so $\Delta_{\mathrm{C}}=\Delta_{\mathrm{A}}{ }^{2}$. Keywords: square root, perfect square, method.

1. INTRODUCTION

If we change the problem into system of equations, then we get an inconsistent system of solutions.
The breakthrough to this was achieved by a ratio I called the "UNCERTAINTY RATIO" and is backed up by some principles.

The following theorem solves our problem

2. THEOREM 1

THE DETERMINANT METHOD (PROPERTY)

It states that the determinant of a squared matrix is the square of the determinant of its original matrix.
i.e. $\mathbf{A} \cdot \mathbf{A}=\mathbf{B}$
$\Delta_{B}=\Delta_{A}{ }^{2}$
Where $\Delta_{\mathbf{B}}$ is the determinant of the squared matrix
$\Delta_{\mathbf{A}}$ is the determinant of the original matrix
Proof:
Let \mathbf{A} be a 2×2 matrix containing all elements as integers be square to give a matrix \mathbf{B}.
$A=\quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
$\mathbf{B}=\left(\begin{array}{ll}\mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h}\end{array}\right)$

$$
\begin{gathered}
\mathbf{A} \cdot \mathbf{A}=\mathbf{B} \\
\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\left(\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right) \\
\left(\begin{array}{ll}
\mathrm{a}^{2}+\mathrm{bc} & \mathrm{ab}+\mathrm{bd} \\
\mathrm{ac}+\mathrm{cd} & \mathrm{~d}^{2}+\mathrm{bc}
\end{array}\right)=\left(\begin{array}{ll}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right)
\end{gathered}
$$

The determinant is, $\left|\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & d^{2}+b c\end{array}\right|$
$\Delta_{2}=\left(\mathrm{a}^{2}+\mathrm{bc}\right)\left(\mathrm{bc}+\mathrm{d}^{2}\right)-(\mathrm{ac}+\mathrm{cd})(\mathrm{ab}+\mathrm{bd})$
Expanding
$\Delta_{2}=a^{2} b c+a^{2} d^{2}+b^{2} c^{2}+b c d^{2}-\left(a^{2} b c+a b c d+a b c d+b c d^{2}\right)$
$\Delta_{2}=a^{2} b c+a^{2} d^{2}+b^{2} c^{2}+b c d^{2}-a^{2} b c-2 a b c d-b c d^{2}$
$\Delta_{2}=a^{2} d^{2}-2 a b c d+b^{2} c^{2}$

Factorizing

$\Delta_{2}=\mathrm{a}^{2} \mathrm{~d}^{2}-\mathrm{abcd}-\mathrm{abcd}+\mathrm{b}^{2} \mathrm{c}^{2}$
$\Delta_{2}=\mathrm{ad}(\mathrm{ad}-\mathrm{bc})-\mathrm{bc}(\mathrm{ad}-\mathrm{bc})$
$\Delta_{2}=(\mathrm{ad}-\mathrm{bc})(\mathrm{ad}-\mathrm{bc})$
It can be observed that the determinant of the original matrix $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ is $(a d-b c)$
$\Delta_{1}=(\mathrm{ad}-\mathrm{bc})$
$\therefore \Delta_{2}=\Delta_{1}{ }^{2}$
Where Δ_{2} is the determinant of the of the squared matrix
Δ_{1} is the determinant of the original matrix

3. NUMERICAL EXAMPLES

1. $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)^{2}=\left(\begin{array}{cc}7 & 10 \\ 15 & 22\end{array}\right)$
$\Delta_{1}=4(1)-3(2)$
$\Delta_{1}=4-6$

$$
\begin{aligned}
& \Delta_{2}=22(7)-15(10) \\
& \Delta_{2}=154-150 \\
& \Delta_{2}=4
\end{aligned}
$$

$\Delta_{1}=-2$
$\therefore \Delta_{2}=\Delta_{1}{ }^{2}$
2. $\left(\begin{array}{cc}1 & 4 \\ 3 & -2\end{array}\right)^{2}=\left(\begin{array}{cc}13 & -4 \\ -3 & 16\end{array}\right)$

$$
\begin{array}{ll}
\Delta_{1}=-2(1)-4(3) & \Delta_{2}=(16 \times 13)-(-4 \times-3) \\
\Delta_{1}=-2-12 & \Delta_{2}=208-12 \\
\Delta_{1}=-14 & \Delta_{2}=198
\end{array}
$$

$$
\therefore \Delta_{2}=\Delta_{1}^{2}
$$

4. THEOREM 2

Determining The Square Root Of A 2 X 2 Perfect Square Matrix

Proof:
Let \mathbf{A} be a 2×2 matrix of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and it is squared to give $\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$ where $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \mathbf{h}, \boldsymbol{\in Z}$

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{2}=\left(\begin{array}{cc}
e & f \\
g & h
\end{array}\right)
$$

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}e & f \\ g & h\end{array}\right)$
$\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & d^{2}+b c\end{array}\right)=\left(\begin{array}{cc}e & f \\ g & h\end{array}\right)$
$a^{2}+b c=e$
$\mathbf{a b}+\mathbf{b d}=\mathbf{f}$
$\mathrm{ac}+\mathrm{cd}=\mathrm{g}$
$b c+d^{2}=h$
From eqn (ii),
$b(\mathbf{a}+\mathbf{d})=\mathbf{f}$.
From eqn (iii),
$\mathbf{c}(\mathbf{a}+\mathbf{d})=\mathbf{g}$ \qquad
Dividing eqn (iii) by (ii)
$\frac{c(a+d)}{b(a+d)}=\frac{g}{f}$
$\frac{c(a+d)}{b(a+d)}=\frac{g}{f}$
$\frac{\mathrm{c}}{\mathrm{b}}=\frac{\mathrm{g}}{\mathrm{f}} \quad\{\mathrm{c} \& \quad \mathrm{~b}$ are gotten from the factors of the ratio $\mathrm{g}: \mathrm{f}\}$
This ratio is called the "UNCERTAINTY RATIO"
Equation (i) and (iv) are used to test the correct factors of " b " and " c " obtained in the uncertainty ratio (i.e. both equation gives a perfect square number).

5. EXTENSION (PRINCIPLES OF THE UNCERTAINTY RATIO)

1. If " g " and " f " has the negative sign, it should not be cancelled in the uncertainty ratio.
2. If " \mathbf{g} " has the negative sign, it should not be transferred to " f " because the shows that the integer "c" actually carry a negative sign.
3. If " \mathbf{f} " has the negative sign, it should not be transferred to " \mathbf{g} " because it shows that the integer " b " actually have minus sign.

6. SOLVING FOR "A" AND "D"

Equation (i) and (iv) are used to obtain integer values of "a" and "d" respectively.

Extension

The check the polarity of "a" and "d"
$\mathbf{a}= \pm \boldsymbol{\alpha}$
$d= \pm \boldsymbol{d}$
\therefore The original matrix becomes $\quad\left(\begin{array}{cc} \pm \boldsymbol{\alpha} & \mathrm{b} \\ \mathrm{c} & \pm \mathrm{d}\end{array}\right)$
and the squared matrix is $\left(\begin{array}{cc}e & f \\ g & h\end{array}\right)$
Recall
$\Delta_{2} \quad=\Delta_{1}{ }^{2}$
$\Delta_{1} \quad= \pm \sqrt{ } \Delta_{2}$
Where Δ_{1} is the determinant of the original matrix
Δ_{2} is the determinant of the squared matrix

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 6, Issue 1, pp: (61-71), Month: April - September 2018, Available at: www.researchpublish.com

Therefore, the polarity of "a" or "d" depends on the determinant, the numerical examples below gives a better understanding of this statement.

NOTE (Principles of the uncertainty ratio)

4 If there is to be negative sign between "a" or "d", it goes to the value with the smaller number by comparing "e" and "h"

The squared matrix is $\left(\begin{array}{cc}e & f \\ g & h\end{array}\right)$
"a" takes minus if $\mathbf{e}<\mathbf{h}$
"d" takes minus if $\mathbf{h}<\mathbf{e}$
When $\mathbf{e}=\mathbf{h}$, 'a" and "d" are taken as positive and a case where "ad" is positive, both "a" and "d" are taken as positive and not negative.

7. NUMERICAL EXAMPLES

1. Find the square root of

$$
\left(\begin{array}{cc}
40 & -3 \\
-12 & 13
\end{array}\right)
$$

Solution

$$
\left(\begin{array}{ll}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right)^{\frac{1}{2}}=\cdot \quad\left(\begin{array}{cc}
40 & -3 \\
-12 & 13
\end{array}\right)^{\frac{1}{2}}
$$

Recall,

$$
\frac{\mathrm{c}}{\mathrm{~b}}=\frac{\mathrm{g}}{\mathrm{f}}=\frac{-12}{-3}
$$

Possible values

\mathbf{c}	\mathbf{b}
-12	-3
-4	-1

There are two possible values for "b" and " \mathbf{c} ", so we test them using eqn (i) and (iv)
$a^{2}+b c=e$ \qquad $b c+d^{2}=h$ \qquad (iv)

When $\mathbf{c}=-12, \mathbf{b}=-3$
$\mathbf{a}^{2}+(-12 x-3)=40$

$$
\begin{aligned}
& (-12 x-3)+\mathbf{d}^{2}=13 \\
& 36+\mathbf{d}^{2}=13 \\
& \mathbf{d}^{2}=13-36 \\
& \mathbf{d}^{2}=-23 \\
& d=\sqrt{ }-23
\end{aligned}
$$

$\mathbf{a}^{2}+36=40$
$\mathbf{a}^{2}=40-36$
$\mathbf{a}^{2}=4$
$\mathbf{a}= \pm 2$
$\mathbf{a}= \pm 2 \& \mathbf{d}=\sqrt{ }-23$ (this shows that -12 and -3 are not the correct factors)
When $\mathbf{c}=-4, \mathbf{b}=-1$
$a^{2}+b c=e$
$b c+d^{2}=h$
$\mathbf{a}^{2}+(-4 \mathrm{x}-1)=40$
$(-4 x-1)+d^{2}=13$
$\mathbf{a}^{2}+4=40$
$4+d^{2}=13$
$\mathbf{a}^{2}=40-4$
$\mathbf{d}^{2}=13-4$
$\mathbf{a}^{2}=36$
$d^{2}=9$
$\mathbf{a}= \pm 6$
$\mathbf{d}= \pm 3$

The original matrix would be of the form $\left(\begin{array}{cc} \pm 6 & -1 \\ -4 & \pm 3\end{array}\right)$
TO CHECK THE polarity of variable 6 and 3
The determinant of the squared matrix Δ_{2} is
$\left|\begin{array}{cc}40 & -3 \\ -12 & 13\end{array}\right|$
$\Delta_{2}=(40 \times 13)-(-12 \times-3)$
$\Delta_{2}=520-36$
$\Delta_{2}=484$
Recall
$\Delta_{1}= \pm \sqrt{ } \Delta_{2}$
$\Delta_{1}= \pm \sqrt{ } 484$
$\Delta_{1}= \pm 22$
The determinant of the original matrix of the form $\left[\begin{array}{cc} \pm 6 & -1 \\ -4 & \pm 3\end{array}\right]$ is
$\Delta_{1}=(\pm 6 \times \pm 3)-(-1 \mathrm{x}-4)$
$\Delta_{1}= \pm 18-4$
When the variable 18 is positive, it gives $14 \neq-22$
When the variable 18 is negative, it gives $-22=-22$
So either "a" or "d" takes the negative sign and since $\mathbf{h}<\mathbf{e}$
i.e $(13<40)$, "d" takes minus
:. The original matrix becomes $\left(\begin{array}{cc}6 & -1 \\ -4 & -3\end{array}\right)$ or its negative $\left(\begin{array}{cc}-6 & 1 \\ 4 & 3\end{array}\right)$
(2) Find the square root of the matrix $\left(\begin{array}{cc}7 & -6 \\ -9 & 22\end{array}\right)$

Solution

Recall,

$$
\frac{c}{b}=\frac{g}{f}=\frac{-9}{-6}=\frac{-3}{-2}
$$

Possible values

\mathbf{c}	\mathbf{b}
-9	-6
-3	-2

There are two possible values for "b" and "c", so we test them using eqn (i) and (iv)
$\mathbf{a}^{2}+\mathbf{b c}=\mathbf{e}$
$b c+d^{2}=h$ \qquad

When $\mathbf{c}=-9, \mathbf{b}=-6$
$\mathbf{a}^{2}+(-9 x-6)=7$
$(-9 x-6)+d^{2}=22$
$\mathbf{a}^{2}+54=7$
$54+\mathrm{d}^{2}=22$
$\mathbf{a}^{2}=-47$
$d^{2}=-32$
$\therefore \mathbf{b} \neq-6$ and $\mathbf{c} \neq-9$

To test for $\mathbf{c}=-3$ and $\mathbf{b}=-2$
$\mathbf{a}^{2}+(-3 \mathrm{x}-2)=7 \quad(-3 \mathrm{x}-2)+\mathbf{d}^{2}=22$
$\mathbf{a}^{2}+(6)=7$
(6) $+\mathrm{d}^{2}=22$
$\mathbf{a}^{2}=7-6$
$\mathbf{d}^{2}=22-6$
$\mathbf{a}^{2}=1$
$\mathrm{d}^{2}=16$
$\mathbf{a}^{2}= \pm \sqrt{ } 1$
$\mathbf{d}^{2}= \pm \sqrt{ } 16$
$\mathbf{a}= \pm 1$
$\mathbf{d}= \pm 4$
The original matrix would be of the form $\left(\begin{array}{ll} \pm 1 & -2 \\ -3 & \pm 4\end{array}\right)$
To check the polarity of "a" and 'd"
The determinant of the squared matrix Δ_{2} is $\left|\begin{array}{cc}7 & -6 \\ -9 & 22\end{array}\right|$
$\Delta_{2}=22(7)-(-9 \mathrm{x}-6)$
$\Delta_{2}=154-54$
$\Delta_{2}=100$
Recall,
$\Delta_{1}= \pm \sqrt{ } \Delta_{2}$
$\Delta_{1}= \pm \sqrt{ } 100$
$\Delta_{1}= \pm 10$
Where, Δ_{1} is the determinant of the original matrix.
The determinant of the original matrix Δ_{1} is $\left[\begin{array}{ll} \pm 1 & -2 \\ -3 & \pm 4\end{array}\right]$
$\Delta_{1}=(\pm 1 \mathrm{x} \pm 4)-(-3 \mathrm{x}-2)$
$\Delta_{1}= \pm 4-6$
When the variable 4 is positive, it gives $-2 \neq \pm 10$
When the variable 4 is negative, it gives $-10=-10$
So either "a" or "d" takes minus
And since $\mathrm{e}<\mathrm{h}$, "a" takes the negative sign
\therefore The original matrix becomes $\left(\begin{array}{cc}-1 & -2 \\ -3 & 4\end{array}\right)$ or its negative $\left(\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right)$

8. SPECIAL CASES (LIMITATIONS)

1. In this case, the determinant method does not apply here and it occurs when either " b " or " c " is zero

$$
\begin{aligned}
\left(\begin{array}{ll}
\mathrm{a} & 0 \\
\mathrm{c} & \mathrm{~d}
\end{array}\right)\left(\begin{array}{ll}
\mathrm{a} & 0 \\
\mathrm{c} & \mathrm{~d}
\end{array}\right) & =\left(\begin{array}{ll}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right) \\
\left(\begin{array}{cc}
\mathrm{a}^{2} & 0 \\
\mathrm{ac}+\mathrm{cd} & \mathrm{~d}^{2}
\end{array}\right) & =\left(\begin{array}{cc}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right)
\end{aligned}
$$

$\mathbf{a}^{2}=\mathbf{e} \ldots . .(i): . \mathbf{a}= \pm \sqrt{ } \mathbf{e}$
$\mathbf{a c}+\mathbf{c d}=\mathbf{g} \ldots$ (ii)
$d^{2}=h \ldots(i i i), d= \pm \sqrt{h}$

From eqn(ii)
$\mathbf{c}(\mathbf{a}+\mathbf{d})=\mathbf{g}$

$$
\mathrm{c}=\frac{\mathrm{g}}{(\mathrm{a}+\mathrm{d})}
$$

Therefore the value of $(\mathbf{a}+\mathbf{d})$ should be a factor of \mathbf{g} since $\mathbf{a}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{g}, \boldsymbol{€} \underline{Z}$
The same applies when $\mathbf{c}=\mathbf{0}$ (when $\mathbf{c}=\mathbf{0}, \mathbf{g}=\mathbf{0}$)
In such cases, the square root gives four possible square matrices depending on the factors obtained as " \mathbf{c} "

9. NUMERICAL EXAMPLES

(i) Find the square root of

$$
\left(\begin{array}{ll}
1 & 0 \\
8 & 9
\end{array}\right)
$$

Solution

Automatically $\mathbf{b}=0$ since $\mathbf{f}=0$

| Recall, $\mathbf{a}^{\mathbf{2}}=\mathbf{e}$ | $\mathbf{d}^{2}=\mathbf{h}$ |
| ---: | :--- | ---: |
| $\mathbf{a}^{2}=1$ | $\mathbf{d}^{2}=9$ |
| $\mathbf{a}= \pm 1$ | $\mathbf{d}= \pm 3$ |

$$
c=\frac{g}{(a+d)}
$$

When $\mathbf{a}=+1$ and $\mathrm{c}=+3$

$$
\mathrm{c}=\frac{8}{(1+3)}=\frac{8}{4}=2 \text { the matrix becomes }\left(\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right) \text { or }\left(\begin{array}{cc}
-1 & 0 \\
-2 & -3
\end{array}\right)
$$

When $\mathbf{a}=-1$, and $\mathbf{c}=3$
$c=\frac{8}{(-1+3)}=\frac{8}{2}=4$ the matrix becomes $\left(\begin{array}{cc}-1 & 0 \\ 4 & 3\end{array}\right)$ or $\left(\begin{array}{cc}1 & 0 \\ -4 & -3\end{array}\right)$
Hence, the square root of $\left(\begin{array}{ll}1 & 0 \\ 8 & 9\end{array}\right)$ gives four possible matrices
2. Find the square root of $\left(\begin{array}{cc}16 & -14 \\ 0 & 9\end{array}\right)$

Solution

Automatically $\mathbf{c = 0}$, since $\mathbf{g}=\mathbf{0}$
Recall, $\mathbf{a}^{2}=\mathbf{e} \quad \mathbf{d}^{2}=\mathbf{h}$

$$
\begin{array}{ll}
\mathbf{a}^{2}=16 & \mathbf{d}^{2}=9 \\
\mathbf{a}= \pm 4 & \mathbf{d}= \pm 3
\end{array}
$$

$$
\mathrm{b}=\frac{\mathrm{f}}{(\mathrm{a}+\mathrm{d})}
$$

When $\mathbf{a}=+4$ and $\mathbf{d}=+3$
$\mathrm{b}=\frac{-14}{(4+3)}=\frac{-14}{7}=-2$, The matrix becomes $\left(\begin{array}{cc}4 & -2 \\ 0 & 3\end{array}\right)$ or $\left(\begin{array}{cc}-4 & 2 \\ 0 & -3\end{array}\right)$
When $\mathbf{a}=-4$ and $\mathbf{d}=+3$
$\mathrm{b}=\frac{-14}{(-4+3)}=\frac{-14}{-1}=14$, The matrix $\left(\begin{array}{cc}-4 & 14 \\ 0 & 3\end{array}\right)$ or $\left(\begin{array}{cc}4 & -14 \\ 0 & -3\end{array}\right)$
Therefore the square root of $\left(\begin{array}{cc}16 & -14 \\ 0 & 9\end{array}\right)$ gives four possible matrices
2. In this case, the determinant method doesn't apply here and it occurs when $\mathbf{a}=\mathbf{- d}$ or $\mathbf{d}=\mathbf{- a}$ (it gives a diagonal matrix)

When $\mathbf{a}=-\mathbf{d}$, " \mathbf{g} " and " \mathbf{f} " becomes zero
Proof:
Let $\mathbf{d}=\mathbf{- a}$
$\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & -\mathrm{a}\end{array}\right)\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & -\mathrm{a}\end{array}\right)=\left(\begin{array}{cc}\mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h}\end{array}\right)$
$\left(\begin{array}{cc}a^{2}+b c & a b-b d \\ a c-c d & a^{2}+b c\end{array}\right)=\left(\begin{array}{ll}e & f \\ g & h\end{array}\right)$
$\left(\begin{array}{cc}a^{2}+b c & 0 \\ 0 & a^{2}+b c\end{array}\right)=\left(\begin{array}{cc}\mathrm{e} & \mathrm{f} \\ \mathrm{g} & \mathrm{h}\end{array}\right)$
$a^{2}+b c=e \quad \ldots \ldots$ (i)
$b c+a^{2}=h \ldots \ldots$ (ii) $a, b, c, e, h, € \underline{Z}$
$\mathbf{a}^{2}=(\mathrm{e}-\mathrm{bc}) \quad \ldots \ldots$ (i)
Since, the two equations are the same, the system of equation gives an infinite number of solutions, thereby giving rise to many matrices assuming values for "b" and " \mathbf{c} " such that ($\mathbf{e}-\mathbf{b} \mathbf{c}$) gives a perfect square

10. NUMERICAL EXAMPLES

(1) Find the square root of $\left(\begin{array}{cc}33 & 0 \\ 0 & 33\end{array}\right)$

Solution

Since $\mathbf{g}=\mathbf{f}=0$, then $\mathbf{a}=\mathbf{- d}$
Recall,
$a^{2}+b c=e$
$\mathbf{a}^{2}+\mathbf{b c}=33$
It should be noted that (e-bc) should give a perfect square
Let $\mathbf{b}=4, \mathbf{c}=2$
$\mathbf{a}^{2}+4(2)=33$
$\mathbf{a}^{2}=33-8$
$\mathbf{a}^{2}=25$
$\mathbf{a}= \pm 5$
If $\mathbf{a}=5$
Since $\mathbf{d}=\mathbf{- a}$

$$
d=-5
$$

\therefore The original matrix becomes $\left(\begin{array}{cc}5 & 4 \\ 2 & -5\end{array}\right)$ or $\left(\begin{array}{cc}-5 & -4 \\ -2 & 5\end{array}\right)$

If $\mathbf{b}=8, \mathbf{c}=-2$
$\mathbf{a}^{2}+8(-2)=33$
$\mathbf{a}^{2}=33+16$
$\mathbf{a}^{2}=49$
$\mathbf{a}=\sqrt{ } 49$
$\mathbf{a}= \pm 7$
:. $\mathbf{d}=-7$
:. The original matrix becomes $\left(\begin{array}{cc}7 & 8 \\ -2 & -7\end{array}\right)$ or $\left(\begin{array}{cc}-7 & -8 \\ 2 & 7\end{array}\right)$
And so on...
(2) Find the square root of $\left(\begin{array}{cc}49 & 0 \\ 0 & 49\end{array}\right)$

Solution

Since $\mathbf{g}=\mathbf{f}=\mathbf{0}$, then $\mathbf{a}=\mathbf{- d}$
Recall,
$a^{2}+b c=e$
Let $\mathbf{b}=0$ and $\mathbf{c}=0$
$\mathbf{a}^{2}=49$
$\mathbf{a}= \pm 7, \mathbf{a}=7$
$\mathbf{d}=\mathbf{- a}=-7$
The original matrix becomes $\left(\begin{array}{cc}7 & 0 \\ 0 & -7\end{array}\right)$ or $\left(\begin{array}{ll}7 & 0 \\ 0 & 7\end{array}\right) \quad($ since $\mathrm{b}=\mathrm{c}=0)$
OR
If $\mathbf{b}=3, \mathbf{c}=-5$
$\mathbf{a}^{2}+3(-5)=49$
$\mathbf{a}^{2}=49+15$
$a^{2}=64$
$\mathbf{a}= \pm 8$
If $\mathbf{a}=8, \mathbf{d}=-8$
\therefore The original matrix becomes $\left(\begin{array}{cc}8 & 3 \\ -5 & -8\end{array}\right)$ or $\left(\begin{array}{cc}-8 & -3 \\ 5 & 8\end{array}\right)$
And so on...
In general, a matrix can have several square roots. The uncertainty ratio offers a fast and direct method for finding it.
The example below shows the usefulness of the uncertainty ratio.
Find the square root of the matrix $\left(\begin{array}{cc}33 & 24 \\ 48 & 57\end{array}\right)$
Solution
Recall,

$$
\frac{\mathrm{c}}{\mathrm{~b}}=\frac{\mathrm{g}}{\mathrm{f}}=\frac{48}{24} \text { or } \frac{24}{12} \text { or } \frac{16}{8} \text { or } \frac{8}{4} \text { or } \frac{4}{2}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 6, Issue 1, pp: (61-71), Month: April - September 2018, Available at: www.researchpublish.com

There are seven possible values for "b" and " \mathbf{c} ", so we test them using eqn (i) and (iv) and it is reduced to two possible values for "b" and "c",

\mathbf{c}	\mathbf{b}
8	4
4	2

There are two possible values for "b" and " \mathbf{c} ", so we solve using them
$a^{2}+b c=e$

$$
\begin{equation*}
b c+d^{2}=h \tag{i}
\end{equation*}
$$

\qquad
When $\mathbf{c}=8, \mathbf{b}=4$
$\mathbf{a}^{2}+(8 \times 4)=33$
$\mathbf{a}^{2}+32=33$
$\mathbf{a}^{2}=1$
$\mathbf{a}= \pm 1$

$$
(8 \times 4)+\mathbf{d}^{2}=57
$$

$$
32+\mathbf{d}^{2}=57
$$

$$
\mathbf{d}^{2}=25
$$

$\mathbf{d}= \pm 5$
The original matrix would be of the form $\left(\begin{array}{cc} \pm 1 & 4 \\ 8 & \pm 5\end{array}\right)$
The check the polarity of "a" and 'd"
The determinant of the squared matrix Δ_{2} is $\left|\begin{array}{ll}33 & 24 \\ 48 & 57\end{array}\right|$
$\Delta_{2}=33(57)-(48 \times 24)$
$\Delta_{2}=1881-1152$
$\Delta_{2}=729$
Recall,
$\Delta_{1}= \pm \sqrt{ } \Delta_{2}$
$\Delta_{1}= \pm \sqrt{729}$
$\Delta_{1}= \pm 27$
Where Δ_{1} is the determinant of the original matrix.
The determinant of the original matrix Δ_{1} is $\left|\begin{array}{cc} \pm 1 & 4 \\ 8 & \pm 5\end{array}\right|$
$\Delta_{1}=(\pm 1 \mathrm{x} \pm 5)-(8 \mathrm{x} 4)$
$\Delta_{1}= \pm 5-32$
When the variable 5 is negative, it gives $-37 \neq \pm 27$
When the variable 5 is positive, it gives $-27=-27$
So neither "a" or "d" takes minus (principle 4)
\therefore The original matrix becomes $\left(\begin{array}{ll}1 & 4 \\ 8 & 5\end{array}\right)$ or its negative $\left(\begin{array}{ll}-1 & -4 \\ -8 & -5\end{array}\right)$
When, $\mathbf{c}=4$ and $\mathbf{b}=2$
$\mathbf{a}^{2}+(4 \times 2)=33$
$(4 \times 2)+d^{2}=57$
$\mathbf{a}^{2}+(8)=33$
(8) $+\mathbf{d}^{2}=57$
$\mathbf{a}^{2}=33-8$
$d^{2}=57-8$
$\mathbf{a}^{2}=25$
$\mathbf{d}^{\mathbf{2}}=49$
$\mathbf{a}^{\mathbf{2}}= \pm \sqrt{ } 25$

$$
\begin{aligned}
\mathbf{d}^{2} & = \pm \sqrt{ } 49 \\
\mathbf{d} & = \pm 7
\end{aligned}
$$

$a= \pm 5$
The original matrix would be of the form $\left(\begin{array}{cc} \pm 5 & 2 \\ 4 & \pm 7\end{array}\right)$
The check the polarity of "a" and 'd"
The determinant of the squared matrix Δ_{2} is $\left|\begin{array}{cc}33 & 24 \\ 48 & 57\end{array}\right|$
$\Delta_{2}=33(57)-(48 \times 24)$
$\Delta_{2}=1881-1152$
$\Delta_{2}=729$
Recall,
$\Delta_{1}= \pm \sqrt{ } \Delta_{2}$
$\Delta_{1}= \pm \sqrt{729}$
$\Delta_{1}= \pm 27$
Where Δ_{1} is the determinant of the original matrix.
The determinant of the original matrix Δ_{1} is $\left|\begin{array}{cc} \pm 5 & 2 \\ 4 & \pm 7\end{array}\right|$
$\Delta_{1}=(\pm 5 \mathrm{x} \pm 7)-(4 \times 2)$
$\Delta_{1}= \pm 35-8$
When the variable 35 is negative, it gives $-43 \neq \pm 27$
When the variable 4 is positive, it gives $27=27$
So neither "a" or "d" takes minus (principle 4)
\therefore The original matrix becomes $\left(\begin{array}{ll}5 & 2 \\ 4 & 7\end{array}\right)$ or it's negative $\left(\begin{array}{ll}-5 & -2 \\ -4 & -7\end{array}\right)$
So the matrix gives four possible squared matrices.

11. CONCLUSION

The determinant method is mainly used to test the polarity of "a" and "d"
In special case 1, the value of " $\mathbf{a}+\mathbf{b}$)" should be a factor of " \mathbf{g} " since $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{e}, \mathbf{g}, \mathbf{h}, \boldsymbol{€} \underline{\mathbf{Z}}$ and the matrix gives four possible square matrices.

In special case 2, "(e-bc)" or "(h-bc)" should give a perfect square and gives rise to many (infinite) solutions.
This approach to solving the square root of a 2×2 perfect square matrix is also applicable to a hermittian perfect square matrix of the same order.

